000 01913cam a2200301 i 4500
003 MIUC
005 20190924102554.0
008 190924s2018 nyua 001 0 eng
020 _a9781292220543
020 _a1292220546
040 _aDLC
_beng
_cDLC
_erda
_dDLC
_dMIUC
042 _apcc
082 0 0 _a658.472
100 1 _aSharda, Ramesh
_92199
240 1 0 _aBusiness intelligence
245 1 0 _aBusiness intelligence, analytics, and data science :
_ba managerial perspective /
_cRamesh Sharda, Dursun Delen, Efraim Turban ; with contributions to previous editions by J. E. Aronson, Ting-Peng Liang, David King.
250 _aFourth edition, global edition.
260 _aNew York :
_bPearson,
_c[2018].
300 _axxvi, 486 p. :
_bill. col.
_c26 cm.
504 _aIncludes bibliographical references and index.
505 0 _aCh. 1. An Overview of Business Intelligence, Analytics, and Data Science -- Ch. 2. Descriptive Analytics I: Nature of Data, Statistical Modeling, and Visualization -- Ch. 3. Descriptive Analytics II: Business Intelligence and Data Warehousing -- Ch. 4. Predictive Analytics I: Data Mining Process, Methods, and Algorithms -- Ch. 5. Predictive Analytics II: Text, Web, and Social Media -- Ch. 6 Prescriptive Analytics: Optimization and Simulation -- Ch. 7. Big Data Concepts and Tools -- Ch. 8. Future Trends, Privacy and Managerial Considerations in Analytics.
520 _aFor courses on Business Intelligence or Decision Support Systems. A managerial approach to understanding business intelligence systems.To help future managers use and understand analytics, Business Intelligence provides students with a solid foundation of BI that is reinforced with hands-on practice.
650 0 _aBusiness intelligence
_92200
650 0 _aIndustrial management
_949
700 1 _aDelen, Dursun
_4aut
_92201
700 1 _aTurban, Efraim
_4aut
_9664
942 _2ddc
_cBK