000 01891nam a2200301 i 4500
003 MIUC
005 20200219142858.0
008 170905s2013 nyua 001 | eng
020 _a9781461471370
040 _aMIUC
_beng
_cMIUC
082 0 _a519.5
245 0 3 _aAn introduction to statistical learning :
_bwith applications in R /
_cGareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.
260 _aNew York :
_bSpringer,
_c2013.
300 _axvi, 426 p. :
_bill. b&w and col.
_c24 cm.
336 _2rdacontent
_atext
490 1 _aSpringer texts in statistics,
_x1431875X ;
_v417
500 _aIncludes index.
505 0 _aCh. 1 Introduction -- Ch. 2 Statistical learning -- Ch. 3 Linear regression -- Ch. 4 Classification -- Ch. 5 Resampling methods -- Ch. 6 Linear model selection and regularization -- Ch. 7 Moving beyond linearity -- Ch. 8 Tree-based methods -- Ch. 9 Support vector machines -- Ch. 10 Unsupervised learning.
520 _aAn Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more.
650 0 _93159
_aMathematical statistics
650 0 _9555
_aStatistics
700 1 _4aut
_93173
_aJames, Gareth
_q(Gareth Michael)
700 1 _4aut
_93174
_aWitten, Daniela
700 1 _4aut
_93158
_aHastie, Trevor
700 1 _4aut
_93162
_aTibshirani, Robert
830 0 _93164
_aSpringer texts in statistics
_v417
942 _2ddc
_cBK